
The geography of amenable subrelations 
of acyclic graphs and beyond

Lecture 1
IR. Tucker-Drob,
R. Chen and G.Terlor]

In these lectures we are concerned with Inoa) amenability ofmeasure-can-presering
(mcp)ctbl Bowel equivalence relations (CBERs) which will typically be treable.

Measure-clan-preserving (mep) (BERS.

An ey. vel. I on a standard Boal space X (say X:= (R) is called a CBER
ifeach E-cam is ctbl and E is a Bowel subset of X?

I Bonel actions of
CBERs

Feldman -Moore
itbl groups

When E is measured, i.e. X is equipped with a Bonel probe measure, we say
pr m

thatE is measure-preserving (resp, measure-clays - preserving) if 4t [E]:=
all Bowel bijections x->X will graphs IE, YM =M (resp. YaMM).
In fact, map c=> theE-saturation [ZJE=2z4] ofeach will atz=X

is null.

Every map CBER E admits a unique (up to null sets) Borel function
W:E- IRt

(x,y)> wY) ==weight (x)d
Mee Radon-Nickodym cocycle (of Ewit M),

weight(s)
unz

(i) is a cocycle:w"(y) · wY(z =wX(z),i.e.-S

My
(ii) and itsatisfies the Mass Transport Principle:V Bowel f: Er (0,0],



1x4(3)dM(x) =(2 f(y,x)wi(y)dM(x)
3E(x]=e -

the outgoing mass the incoming mass

liveto x Etox)
*Exercise 1. (a) show that (ii)> (iii) F YELE] d4M(x) =wY(y-(x)).

ide
(b) E is prp (FYECE), YoM=M) (=> w=l.

Treeable CBERs.

A graphing ofa CBERE is a Bonel graph GonX (i.e. G2x2
Is are exactly the

Borelineticsuchthatthe connectedpores exactly in

Example. LetI be the orbit eg. eel of a Bovel action of a ctbl3p
↑on Xand letP =CS> where SIP is symmetric.I

The Schreier Graph is ofthis action Curt 3) is the graph
on Xdefined by:

(x,y)eGs =)s.x =y for some generators ES.

Clearly, as is a graphing of E and ifthe action is free,
N each

componentis a copy
of the Cayley graph of P.

A CBER E is trecable ifit admits a acyclic my, called agraphe
tracing. If i is a Bowel probe measure on X, then E is called M-treeable
ifit is treeable after throwing out

an E-invariantBorel will at,



Example. Every tree Bevel action of the free
group

In low new generar
fors) includes a treeable CBER; in fact, the standard Schreier

graph is a teeing.
inceable CBERs play be same role

among
all CBERs as free groups

among all atdlyps,

Hyperfinite/amenable CBERs.

ACBEREishyperfinitye)."Elite is initeBoule
an E-invariantBonel wall set.

Fact (Weiss, Slaman-Steel). A CBER is hyperfinite is it's induced by
a Bowel action of D.

In particular, hypefinite ->tremble.

A CBERE on (X,M) is amenable if there is a "measurable"

assignment x4 my of a finitely additive prob.measure or ExJE,
x EX, thatis E-invariant. "M-measurable"means thatfor

any Bowel B=X,
the

map
X->IR is -measurable.

x H mx(BL

Fact (see Jackson-Kechris - Louveau
(a) Mokobodzki: CBERS induced by Bonel actions of amenable gps are amenable.
(b) Folklore:Conversely, if a free prop

action 4 (X,M) induces a Namenable (BER, then
↑is amenable. (This is false outside ofpup.)



Cones-Feldman-Weiss. M-hyperfinite =-amenable.

We will be working in the measure context, ignoring wall sets, so

for as hyperfinite-amenable.

Ends of graphs.

Itto be a connected graph on a vertexset V.

A Gray is an infinite simple G-pata (re), and we demote the
set of Grays by Rays(h).

For a set UEV of vertices, a side of U is a connected component
of the saph Grl obtained from a by removing U.

& ~ G

U--lin
↳it was denote the end equirrel. On Rays(h), i.e. (n) a(ya)
if for each finite set DIV of vertices, (a) and (ya) are eventur

ally on the side ofU. Mn)

(Xu) one-ended
⑧ 8

⑧
U

-

..

U (a)
twoended (u)

An end of his just a waien. dan. We devote the space ofends



by &aV =
=Rays(a)/ra.

For a sides ofa finite set UEV, hit as:- all ends whose

representative rays are eventually in S. Call 5"== SVOnS
an extruded side of U.l

44 F =
=VUaV be equs withpped topology generated by

the vertex singletons anch extended sides of finite vertex auts.
This is 0-dim and when his locally ctbl, it's Polish.

When I isn'tconnected, all the above notions make ourse, but
the top, on th is no longer nice.

Adams'dichotomy forpup.
We call a Bovel graph a amenable ifsuch is its connectedness
relation Ea. Here we characterize all treeings that are
amenable in to prop

context.

Theorem (Adams). A pup tracing is amenable at ithas 2 ends
in a.e. connected component.

This fails outside of pup, e.g. the boundary action Iz*DIE
is free on a coctblset, so itadmits a 4-regular freeing, ye I
the orbiteg. rel. is amenable (in fact, Borel hyperfinite1.
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Counter example to Adams' in map. Let Fz=<abs be the free group
on Ja,b3. By

the boundary of is we mean the set II of all infinite reduced words
in hat', 51, so it's a closed subset of [at1, b*),i.e. words with no can-

cellation. In naturally acts on this by concatenation and cancellation, namely:
if se\at1, bE3 and Wadle, men sow- sw if Isw and

otherwise, sw=x(N1) =w. This is a continuous action and it is
feel except on a ctbl set. Thus, this action admits a y-regular freeing
(with trees copies ofthe Cayley graph of IF):

x =abat ...
In particular, there are X-many ends sat a I

8. C
bt
XNeverthelem, this action is hyperfinite. -

We show his by showing that theorbit enc
rel. EIF is also induced by a single Borel
otbl-to-one function (and applying the result of Dougherty - Jackson -
Rechris which says thatsuch CBERs are hyperfinited.
Let 0:&Fet0In be the shiftmap, i.e. (wn) is (wati. Note hethe

graph of t is just a directing of the treeing above.

t tax In other words, there is a secretselected endI
I -- o

.bi ·H*(x) in each componentofthe treeing, which③ 3 S ...

-r(x)=ag It----
---

., /
makes it hyperfinite.- T T

x=abat ... It turns out thatthese secretends are revealed

by quasi-invariantmeasures (i.e. M sit. Ein is M-map).
Let's define a quasi-inv measure Mon OI using simple nonback -

tracking random walk:themeasure on a dopen cylinder [ab"a"b3:=
the act of all WeOI starting with abtab,M([abab]) =4.55



:
- - TheRadon-Nikodym wocycle is given by:V= ! *-

w
x(r(x)) =3. Exercise 2. Prove this.

I N

vanishing ends and generalized Adams' dichotomy

sociateRateMindym e.BER Fon IX, M) with ur: E-IR* Un

Remark. Be assumption of map on a CBER is non-restrictive because:

(a) <acomall setXEX sit. Ely' is map.
(b) Iprob meas. MiC3M and E is map

mit d!

Det. For a Trumponent 2, an and MC&,] is called vanishing
iflimuty) =0, where xis any/some of in C.

y -n This means FE20 7"neighbourhood" of,
I M

i.e. sides offinite sets, w"(y) < 3 FyEU.

↑
8

x X Thus his mouvanishing iflimsup welyk O,T
③ Y

- A y-4
- - U

-

-

Y
-

i.e. 5338 k neighbourhood of M."Mi,itTo 3 - by EU with wYy) =3.· Uin
I IIl/ I T We

say butit has wrefinite geodesics, if eac
9

ray
to M is w-finite.

(We say thatA = C is wefinite if w"(A):=
-

2 wYy 1-8.)
y =A



Generalized Adams dichotomy (ts-Tucker-rob). Lt E,t, w,be as above.

(a) E is amenable -> a.e. I-component has 22 mouvanishing ends;
) a.e. T-componenthas 2 ends with m-infinite geodesics.

(b) E is nowhere anewable (-) a.e. T-component has perfectly-many
nouvanishing ends.

This means that the set of nouvanishing ends is nonempty closed and has no isolated pts.)
() for a.e. T-component, the set of ends with

w-infinite geodesics is nonempty as and
has no isolated

M

(Open question. Is this set dosel?)

Thepup Adams' dichotomy can be proven using cost:=expected degree of

graphings. But the theory ofhostbreaks outside of pup. However, Adams

original prove used and selection instead, which will discuss next.
To state it, we need to define smookness (= triviality motion for CBERS).

Smooth (BERS.

A CBEREon X is smooth <=35 Bovel selector, i.e. a Beal Six-X
VE-clames 3.t. x Fy <=3 s(x) =S(y) and s(x)E(XIE.

xffffff1.7%.)).selected points
E is smooth if E is smooth on a Boel wallet.

Exercise 3. An map E is smooth S a.e. E-cless is wr-finite.

Exercise 4. Smooth ->hyperfinite. (Hint:Use Feldman-Moore. (

inded CBER are site).
24

my 200 1. ir

We generalize His:



Ben Miller chowed that endles tenings are smooth. We generalize this:

Characterization of smoothness (Ts.-TD). An map freeing is Mrsmooth (

all ends are vanishing Latter discarding a wall sets.
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End selection.

let I be a nowhere smooth treeable cmp CBER on (x,M) and let be a train of it.
F-invariant

Wet. For a subs.nel. FCE, an F-invariantBorel end selection is amap x->Pricld*,M

mapping each x EX toa finite set Ex of ends in the T-connected component of
xsuch thatits lift X-sPrin(Rays()) by xH 3(x, M)+:46Ex3 is Bonel.

Here by Ex, 1),we mean the t-ray starting from xrepresenting 4.

Theorem (Adams-Lyons;see JKL:=Jackson-Kechris-Louvean).
With the above assumptions, Iis amenable at it admits an E-iur. Bone
end selection of 2 ends
If Iitself is nowhere smooth, then there is a maximal such selection and
it's unique up to wall site.

Now let's prove:

Theorem (Adams). A pup tracing Tis amenable at ithas 2 ends
in a. C, connected component.

Proof-sketch. I just selectall (22) ends in each T-component, so I is amenal.

=5. Let x + Exbe a maximal E==Ep-invariant Bonel and selection from 5.

WIOh, it's enough to consider the following two cases.



Case 2. Two ends are selected by each E-clan. For each E-can C, lt I be the

T-line between the two selected end

scheuteand
I

L ·berted end
Thesides of Lae w-finite (being the

classes of a smooth CBER F of of being
on the same side of the line, use Exercises). Thus, if E is pap, each side
is finite, so it has no ends; and in map, all ends in the sides are vanishing.

Case 1. One end is selected by each x + X. Denote it by 34. btA: X-sX
be the map taking each xEX to the nextpointon the ray (x,3,3. Mus,

selected end
T is just the undirected version of Graph(f).

-zes....
-

We want to show that f-back ends don't exist.
!

Do a mass transport by letting each x6X give
its whole mass (1) to each of its preimages, 10 euch xgives: * and
receives=1 (by pup, beuse Ione frimage ofa). Butbead we selected

only 1 end, Icannot be essentially z-ended, so done are pointsin each

E-class thathave 32 preimages. This shows 2 =1, by Mass Transport, to
(4) This is after iteratively charing the leaves.

We will now show how to prove Case 1 in the map setting.

Proofof map Casel. aleed and We need to sho-that the f-back
-zes....

-

It ends are vanishing.
A technical analysis boils this down to proving the following:
Core Lemma. Almost

every E-clan has points xcX st. By behind x
(i.e.y tx,f(x) w(x) < wly).

We now prove the core lemma. Suppose otherwise, then WIOh, we assure that



for all xEX where is a pH y f-behind x set. Wix=Why). By Luzin-Novi-
bor uniformization, 5 Borel 90: X-3X thatmaps each to such a y.

gox) Thus, w(x) =w(go(x)) =w(y0(x)) -...
...

·Gox A
Heuse, each goorbitis w-infinite, so by Exercises,X

...
8.
g(x)) ⑧

the orbit es. rel. Ego is nowhere smooth land ame-
⑧⑧ X I nable because it's given by a functions.&

go(x")
-

Also by Luzin-Novikov, aBorel y, X-X taking each to
a y = =(x) sit. The path from a to gold doesn'tgo through y,
ifsuch a

y exists; otherwise x x. Since is not essentially
2-ended, Mere will be x with (f*(l)?2, so theorbit eg. re).

Ey, has a cousingleton dass in each E-class. Eg, is also amenable.

By our Paddle-ball Lemma for eg.rels (applied to Ego and Eg,I,
we yet that Ego and Eg, are freely independent, which contradicts
the amenability of E by:

Theorem (Carriere-Ghys). ItEbe a CBER on (X, M) and assume that

Econtains a fee product FoxF, ofeg.rels, such that:

(i) Fo is M-nowhere smooth;
(ii) a.e. E-class contains a countrivial F-clan.
Then E is nowhere amenable.

Although we need the more general Paddlerball Lemma for
eg. rels,

Iwill only state it for permutations for simplicity.
Paddle-ball Lemma for permutations (Ts-TD). L4 T be a tree on a vertex set
v. Let Itbe a distinguished end of 7 and let I =Sym(V) be s.f. Ar



&fch
(i) ve(0), 34,FrEZ.f

ryT

·

[u (ii) v=(r(n, [(r)) + fr, ic Z.

I ⑧
Then Ifreely generates a free group (23, whose

action out

At is free.

Which ends are selected?
⑧

⑧

⑧ let I be a tremble nowhere smooth
F-class D I

CBER with a train 5 LetFC E

⑧ be amenable.

⑧

⑧

ils

Theorem (Ts-TW) · Fix an Faclan N. Let To be the subtree spanned by , i.e. Two is
the T-convex hull of D. Discarding a wall set, we have:

(a) When I is prop, to has 22 ends and these are exactly the selected ends
b) In general for mept, Ta has 2 mouvanishing ends along D, i.e.
limsup w(y)>0, and these are exactly the selected ends

y -n
y(D

Background reading.
Kechris has a survey on CBERs.
Also JKL:=Jackson - Kechris - Louveau!




